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A different implementation of the Monte Carlo projector method is presented. It is based 
upon parallel scoring and population tracking techniques. The algorithm was tested in the 
analysis of the quantum spin Potts model P(q) on a lattice of (I+ l)-dimension. Comparison 
with other techniques shows an improved accuracy of the results. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

The Monte Carlo projector method is a powerful tool which can be used suc- 
cessfully to perform numerical simulation of lattice models, especially spin models. 
However, the accuracy of the results obtained for different cases proves to depe 
largely upon the particular model considered and the technique used. Seve 
variations of the basic algorithm [ 11 (usually called (NE + NT)/NE method) have 
been proposed to obtain better results. Among them there are two which demand 
special attention: The population tracking method [2] and the parallel scoring 
technique [3]. Applications to simple models [I-S] suggest that, in general, t 
first one is a procedure which tends to decrease fluctuations even when an adequate 
a priori knowledge of the Hamiltonian eigenstates is not available; while the second 
one, even useful to reduce systematic errors, in certain cases gives rise to 1 
fluctuations unless the eigenstates are sufficiently well known. It would then b 
interest to develop an algorithm with the features of both foregoing ones. 
present here an algorithm pointing to that direction, which we shall call. 
population tracking-parallel scoring algorithm (PTPS), which is based on an 
appropriate combination of the population tracking and parallel scoring te~~~~- 
ques, working complementarily. We should also mention that because the star&r 
population method presents instabilities we have also introduced a rnodi~~ati~~ of 
this method in order to cope with them. 
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We have chosen the one-dimensional quantum spin Potts P(q) model in a trans- 
verse field to illustrate the features of our proposal. For q = 2 this model becomes 
the well-known quantum Ising model which has been studied before with the 
projector method in some particular cases [l-4]. These previous results were used 
for comparison. A description of the PTPS procedure is presented in Section 2. The 
model and the numerical results are placed in Section 3 and, finally, Section 4 
contains our conclusions and some remarks. 

2. THE METHOD 

We shall present here a brief description of the projector method [3-5-J. To this 
end consider first a hamiltonian H and let E,, Itii>, i = 0, 1, . . . be its eigenvalues and 
eigenvectors, respectively, choosing for definitness E,, Q E, Q EZ, ,.., etc. Now, if 14) 
and Ix) are two vectors of the Hilbert space spanned by { ltij) >, such that 

and 

then 

(41tij>=(Xl$j)>=" for allj<i (i>O) (2.la) 

<#ltii> z”2 (Xl$i)#O (2.lb) 

e -P’4 = lim (xl e- (P+p’)H 14) 

P-Q (xl eePHId) * 
(2.2) 

Notice that only one of the equalities (2.la) is necessary because the eigenstates 
) IJI i ) are orthogonal. 

The Monte Carlo projector method provides us an algorithm designed to 
evaluate the right-hand side of (2.2). The limit involved in this equation is 
computed by introducing a large integer N such that 

/3=Nz; /?‘=NAz (2.3) 

so that one can write 

e-“dTE,-Z(N) z+Az)= (xl e-N(‘+dr)H 14) - 
-W, z) (xl cNrH Id> ’ (2.4) 

Now one splits H as 
H=H,+H*, (2.5) 

according to some criteria that will be discussed below. After this splitting, and for 
small r; we can make the approximation: 

T(z) = e --T(H1+H2)~e-rH:e--H2= T,(r) TAT). (2.6) 
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Therefore one has for the Z function 

WY z) = (xl CT’(T) uw Id>. (2.V 

The next step is to introduce a complete set of states {(i) > between each factor of 
Tk. Then we have 

Z(N,r)= c <xII’.v+1 )<i,,ll T’(T) l~,><jIvl T*(r) IiN)... 
ik,iz. . . . . iN+l 
A.iz, . . ..jN 
(&I W) W<AI Lb) IWhO (2.8) 

In order to evaluate this expression it is convenient to define “probabilities” (P) an 
“scores” (S) in the following way: 

(il T/((z) lj) = S!k’( ) P!k)( ) u I7 IJ 7, k=l,2 (2.9a) 

W>==wi~ 

The probabilities should certainly verify 

P?)(z) B 0, pi>0 for all i, j; k = 1, 2 

cPjJk’(z)=cpi= 1. 
I I 

Then (2.8) is equivalent to 

Z(N 7) = c S,(z) P,(z) 
a 

with 
~=di~,j~, &,A, . . . . iN,jN, i,,,), 

s (z)=x. (* l/V+1 A!?!” I,+,jN(z).“Sl~~,(r)Sj~~(t) iiilT (2.1 ic) 

Xi,+ I = (xli,+A 

P I (7) = P$‘c,,(s) . . . P$(z) Pj?i)(T) pc~ 

Equation (2.1 la) gives Z(N, z) as the mean value of a random variable which takes 
the values S,(z) with probability P,(z). 

The projector algorithm generates a set of samples of S,(r), each one w 
probability P,(z), so that (2.11a) can be replaced by the arithmetic average of 
samples. 

To evaluate (2.4) one has to obtain samples of Z(N, z) and Z(iV, z + AZ). These 
seem to be two separate problems, but it is not the case. The parallel scoring techni- 
que [3] allows us to calculate Z(N, z) and Z(N, z -t- AZ) simultaneously. To do this, 
we consider a single set of probabilities Pb!), so that we have 

(iI T,(T) lj) = S!k)( ) P!k) lJr tJ3 k=l,2 (2.12a) 

(il T/J7 + AT) lj) = spyz f AT) Pli”‘, k=l,2 (2.12b) 
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instead of (2.9a). Therefore, one set of samples for S(r) and another one for 
S(z + dr) can be evaluated by means of a single set of configurations. 

Equation (2.12) does not define probabilities and scores unequivocally. Then, 
different probability distributions can be chosen in order to end with better results. 
We have used the standard projector method distribution [l], given by 

(2.13a) 

(2.13d) 

Notice that when the matrix elements (il T lj) are positive, SF)(r) is indepen- 
dent of i. Similarly if (ij 4) > 0 for every i, cii is a constant. 

The accuracy of the results obtained with the parallel scoring procedure depends 
largely upon Ix) and 14). Our experience shows us that in general no accurate 
results can be obtained if previous information about the eigenstates I$i), like 
variational states is not available. 

On the other hand, it is also known that the population method is a technique 
which in certain cases could provide good results without having a detailed 
knowledge of the eigenstates of the system [2-4]. These two facts prompted us to 
combine the population method with the parallel scoring technique in the PTPS 
algorithm which can be described as follows: 

(i) Build up an initial population of L, members, each one consisting of an 
element of the basis {Ii)} which we may also call “a configuration,” plus two 
running scores (one for Z(N, z) and one for Z(N, z + LIZ)). 

(ii) Apply T(z) and T(r + dr) to all the members of the population, modify- 
ing the running scores and obtaining a partial score Y;memberI for T(z). 

(iii) Evaluate normalized scores 

9; member) = 
LtlY;member) 

c population’s members qmember) 

Such that 

c ? member) = LO (2.14b) 
population’s 

members 
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(iv) Evaluate, for all members of the population 

9; member) =I’+r, (2.15) 

where I’ is an integer and 0 < Y < 1. Choose I= I’ + 1 or I= r, at random, with 
probability P and I- r, respectively; and keep I copies of the member. Notice that if 
I= 0, the member must be deleted. 

After this we have a population of L, members. (2.14b) ensures that E, will be 
close to L,. 

(v) Repeat N times steps (ii) to (iv), obtaining a population of Li me 
after the i-step. 

At the end of the entire process we have a population of k, members, each one 
containing samples of S,(z) and S,(r + dz) which are used to evaluate [2.4]. This 
final population is used as input of step (ii) and the procedure is repeated many 
times in order to obtain a large number of samples. In practice we discard the first 
samples in order to reach a stationary regime. 

In the standard population tracking procedure [4] one normalizes the scores 
with a reference score previously evaluated. In our procedure, we exploit the 
arbitrariness of this reference score and choose (Eqs. (2.14)) the best value in order 
to obtain a more stable number of members. 

3. THE QUANTUM SPIN POTTS M[ODEL 

We apply the projector method to evaluate the lowest lying energy levels of the 
(I + 1 )-dimensional quantum spin Potts model P(g) in a transverse field. For q = 2 
this model becomes the well-known quantum Ising model and for that reason it can 
be used as a test case for the present algorithm. 

The hamiltonian of the P(q) model is given by [5]: 

H= -i N;-h f: “r’Q$‘JLy,,k, (3.1) 
i= 1 i=l k=l 

where s is the number of spins in the (1 + 1)-dimensional lattice, Ni and Qi are q x 
matrices given by 

1 

. . . 

(3.2a) 
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w = &W4. 

. . . . 
(3.2b) 

The periodic boundary conditions imply that 

B =l2,. s+l-- (3.3) 

The corresponding vectors of the Hilbert space can be written in the form 

li>=[i’)@li2)@ -*. @Ii”), (3.4) 

where each [i”) is one of the q different states of the spin i. 
Our purpose is to evaluate the two lowest energy levels, E, and E,, or 

equivalently the ground state &, and the energy gap A = E, -E,. If we want to 
calculate E, using (2.2) with the conditions (2.1), we must choose a vector 14) such 
that ( $0) d> = 0 and (11/r ( 4) # 0. Such a vector can be constructed with the help 
of a symmetry operator C capable of easily labeling the subspaces containing ItiO) 
and [$r >. This operator exists and can be defined 

‘0 0 . . . 

0 0 ... 
. . . 
. . . 
. . . 

0 1 ... 
\l 0 ... 

as 

0 1’ 
1 0 

. . 

0 0 

0 01 

(3.5) 

C commutes with H and with all the Nis. Furthermore, it is easy to see that 

c MO> = I$o). (3.6) 

The degeneracy of the first excited state does not allow the assignment of a definite 
value of the Z operator in the q > 2 case. In other words, there are vectors 1$!‘)> 
and I$‘,-)) both belonging to the eigenspace of E,, which verify 

z: I$\“> = I+\+‘> and 2 II)-‘) = - 1l+b-‘). (3.7) 

If we choose a vector Id> such that Z 14) = -Id), then (3.6) ensures that 
( ~$1 ij0) = 0 and so we can obtain E, from (2.2) using this vector. 
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It is worthwhile to notice that C reduces to the symmetry operator introduced by 
Kung et aE. [4] for q = 2. 

Implementation of the Projector Method 

Now we apply the procedure of Section 2 to the present model. First we split the 
hamiltonian into the form 

where 

H=H,+H,= : &-lJj$. 2 &Jj+1, (3.8a) 
i=l i= 1 

([ ] means integer part of), and 

4-l 

A,= -N,-h ‘c Qf&?-“. 
k=l 

(3.8b) 

With this splitting of the hamiltonian into odd (H,) and even (U,) parts, already 
applied to the q = 2 case [4] and to models with fermions [5, 7, 81, we can set up 
the PTPS method in the form of a local iterative algorithm. It is evident that the 
terms in H, (and in Hz) commute; for this reason we can write 

T,(z) = fi t2i- 1,2i(T)i 
R2 

TAT) = tzi,2i+ ii71 (3.923) 
i=l i=i 

t&z) = exp( -t&). (3.9b) 

Then, the matrix elements of Eq. (2.12) can be split into products of partial quan- 
tities involving pairs of neighbour spins. Therefore, the evaluation of probabiiit~es 
and scores requires the calculation of the matrix elements: 

M,(z) = (i’i21 t12(z) 1 jy”). (3.10) 

Now, the probabilities and scores (2.12) can be written as 

p$+‘= fi P2i+k-2,2i+k-1; k=l,2 
i=l 

s$yq= fi 
d2i+k-2,2i+k--l(Tt) 

i= 1 

and, taking into account (2.13), we have 

(3.12a) 
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FIG. 1. Normalized energy levels versus, h for several selected cases. The triangles correspond to sO 
and the squares to cr. Error bars (two standard deviations at each side) are smaller than the symbols. 
For clarity, the values for E, were not included when superposition with the corresponding ones for 8s 
takes place. The full lines represent the exact results and the dashed ones show the asymptotic limit of &a 
for h+co. 
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0.5 1.0 1.5 2.0 2.5 h 

FIG. I-Continued. 

M..(z) 
+(z) = -2--- 

Pij 

ii& + AT) = 
M& + AZ) 

Pii ’ 

(3.12b) 

(3.12C) 

In order to evaluate E, , we should work in the representation where o and N are 
diagonal. However, numerical calculations are simpler in the basis where 
diagonal. If we call & the matrix obtained in this basis, then the matrix M (i 
basis where CJ and N are diagonal) is easily obtained by a similarity transformative 

M=U-‘ATU. (3.13) 

Some details of the calculations of fi are given in the Appendix. 
The ground state energy was evaluated working sometimes in one rep~es~~tat~~~ 

and sometimes in the other. 

Numerical Resuh 

One of the purposes in our calculation, was to test the PTPS method in the 
detection of phase transitions in particular in the P(q) model. To this end we have 
computed the first two energy levels corresponding to the following cases: q = 2 to 
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6, s = 4, 6, 8, and 0 d h < 3. In our analysis it was convenient to define normalized 
energy levels as 

-5 
&i=(q- (3.14) 

Then s0 verifies 
&g= 1 for h=O, (3.15a) 

&()- - h for h+co (3.15b) 
for every q and S. 

It is well known that the present model has, when s -+ 00, a phase transition at 
h = 1, being of second order for q < 4 and of first order otherwise [6]. The phases 
can be labeled by the degeneracy of the ground state, i.e., it is non-degenerated for 
h < 1 and becomes degenerate for h > 1. The order of the transition is related to the 
continuity of the derivative of E, with respect to h: In a first-order transition this 
derivative presents a discontinuity at the transition point. 

In a finite system there are no such discontinuities and the ground state is non- 
degenerate for every h. However, the existence of a phase transition in the 
neighbourhood of h = 1 can be inferred from the vanishing tendency of the energy 
gap A. The calculations were performed taking B = 1.25 and AZ/Z = 0.08 in all the 
cases. About 100,000 samples of the energy levels were averaged at each point. 

We present in Fig. 1 some representative examples of our results. When available, 
exact values of the energy levels were included for comparison. These exact values 
were obtained by direct numerical diagonalization of the hamiltonian of the 
corresponding finite system. 

0.25 - 

0.5 1.0 1.5 2.0 2.5 h 

FIG. 2. Normalized energy gap q’ versus h for the particular case q = 2, s=4. The full line 
corresponds to the exact result. 
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The vanishing tendency of the energy gap can clearly be seen, even in the smallest 
systems, confirming the appearance of a phase transition However, an accurate 
determination of the value of the transition parameter h, is not possible. 

Figure 2 shows, for a particular case, the results for the normalized energy ga 
9 = A/q, provided by the PTPS method in contrast to the exact value. 11 was always 
computed by subtraction of the two first energy levels gi.ving rise to greater errors. 
However, the calculated values are in good agreement with the exact ones. 

Notice also that an alternative way of computing q, as the one propose 
Ref. 1141, cannot be easily generalized for this model when q > 2 and would imply a 
substantial increase of the computation time. 

4. CONCLUSIONS AND REMARKS 

We want to start by making some remarks about our numerical calculations: 

(i) The values of the different physical magnitudes should be independent of 
the basis ( 1 i) > used to perform calculations. In practice, however, numerical fluc- 
tuations could be different when working on a different basis. This is due to the fact 
that the probability distribution of the random varia.ble whose mean is to 
evaluated, does depend on the selected bases. Moreover, if the distribution is not 
sampled thoroughly enough, also the mean values may appear to depend on choice 
of basis. In order to analyze the dependence of the results upon the selected basis, 
we have evaluated the ground state energy E, twice by using the h4 and & bases, 
respectively. We have not detected any important difference between the 
corresponding results. This kind of test should be done in every particular 
application, not only to detect instabilities of the numerical method but also to find 
a basis which minimizes fluctuations. 

(ii) The relative fluctuations in the number of members of the populations 
were less than 1.5 % in all the cases studied. This is an important reduction in com- 
parison with the values of the standard population tracking technique, which we 
found to be, in certain cases, superior than 200%. 

(iii) All the elements of the matrix & are positive, but it is not the case with 
the M’s. For this reason, fluctuations are larger when calculations are performed 
with M. However, the number of negative elements in M is small when compared 
with the matrix size, so special population techniques for negative matrix elements 
[S] were not necessary. The modifications performed in the population updating 
procedure played an important role at this point. Nevertheless, it would be 
interesting to adapt such techniques to the present algorithm and apply them to 
systems with nega’tive matrix elements. Work is in progress in that direction. 

(iv) Computer t’ ime restrictions turned impossible for us to obtain a large 
number of samples in all the calculated cases. We could observe in some particular 
examples that increasing statistics result in smaller error bars. 
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(v) Our PTPS results obtained for E, and E, are truly independent of the 
initial state 14) used, in contrast with large dependences found in previous works 
[l, 3,4] which did not use population techniques. However, in order to reduce the 
number of discarded samples a variational state of the form 

cos e 

,+fi ye ; i) a= (q- 1)-l/2 (4.1) 
i=l 

a sin e 

was used in almost every case. 
On the other hand, a broad final state like Ix) = xi Ii) was always used. The 

inclusion of other final states could, in principle, improve the results [4]. 
(vi) Before developing the PTPS method, we tried the following ones [ 1,4]: 

(NE + NT)/NE, modified projector and parallel scoring, in order to adjust 
parameters and to make comparisons. For these proofs we used the probability 
distribution 

pp = I <il Tk(T) LOI” 
CI I(4 T/c(z) ml”’ 

k=1,2; v>o (4.3) 

instead of (2.13a), with several values of v. We decided to keep v = 1 because in the 
other cases the algorithm becomes more involved without significant improvement 
of the results. We also made a comparison with pre-existent calculations in order to 
illustrate the performance of the PTPS method. In Fig. 3 we have plotted the results 

0, 
0.2 0.4 0.6 0.8 1.0 p 

FIG. 3. Approximations to the ground state energy level EO for the eight site 9 = 2 model, versus fi. 
The dashed line corresponds to the exact value. The circles are a scaled reproduction of the black ones in 
Fig. 1 of Ref. 4. The squares are our PTPS results. When not drawed, error bars are smaller than the 
symbols. 
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obtained for E, in the case of the eight site Ising model (4 = 2). The big circles are a 
scaled reproduction of the black circles of Fig. 1 in Ref. [4] while the squares 
represent the PTPS result in similar conditions (broad final state) but witbo~t 
inclusion of information about the system eigenstates. Notice that tbe I? 
method is able to provide good results without the knowledge of the alr 
mentioned a priori information about the eigenstates. It also implies a reduction of 
systematic errors (the succession of circles seems to converge very slowly to the 
exact value). The accuracy of the value obtained for fl= 0.1 is accidental due to 
typical cancellations, very frequent when using parallel scoring. 

(vii) Before starting the final calculations we tried several values of the 
parameters p, T, and AZ. It was found that the selected values of these prameters are 
appropriate in the sense that no excessive truncation errors appear in the results 

We have presented a new implementation of the projector algorithm, base 
two previous proposals [3,4] and it has been applied to a particular case 
quantum Potts model. The analysis of its features has shown an actual 
improvement in the accuracy of numerical results when compared to previous ones. 
We have also shown that this method could be useful in the detection of phase 
transitions even if one is dealing with a very small number of sites. 

We should also mention that all the numerical calculations pres bhiS 
work were done at the La Plata University Computer Center, in an I /3--Q 
CPU model 4361. In this machine, the evaluation of one e y level, for a given 
value of h, in an g-spin system demands about 10 min of C time. 

APPENDIX: CALCULATION OF h' 

From (3.9b) and (3.8b) we see that 

i 

Y-1 
tij(z) = exp rN,+ zh c QfG?~pk 

k=I 

e take, with no loss of generality, i = 1, j = 2, and write 

Let 

t(z) = t,,(z) = exp 
i 

zN + zh ‘2’ .C?~L@$-~ (A.2) 
k=? 

Y-1 
(A.3) 

It is easy to see [9] that 

(i1i2/ e lj’j’) = (q6$,\2- 1) 6,“jl(si*jz, 

where fii,?) is the standard Kronecker 6 modulo q: 
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The fact that 8 is a diagonal matrix can be used to avoid the evaluation of the 
exponential of a q2 x q2 matrix. If we define 

and 

(A.51 

t’(z) = exp(rN+ r/20,). 

Then it can be seen that 

l@,(z) = CL,(T) &z,jz 

with 

k=f(i’, i2, l), Z=f(j’,j2, 1) 

and 

if i#j and i#k 

f(i, .L k) = I if i=k 
k if i= j. 

To evaluate t’(r) we use the well-known Trotter formula [lo], 

t’(z) = lim [t;,(z) t;,(r)]” 
n-cc 

with 

64.6) 

(A.7a) 

(A.7b) 

(A.8) 

(A.9a) 

and 

r;,(z) = exp (A.9b) 

(A.9c) 

The evaluation of t;,(z) is trivial because e1 is diagonal. For t;,(r) we find that 

&I(~) = %,(~v+ a,,(z)N (A.lOa) 
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with 

k 

and 

a,= 1, b,=O, 

ak=(q-l)bk&, 

bk=Q-1+(q-2)bke1. 

(A.106) 

Now we can evaluate (A.9). For practical reasons it is convenient to define 

t;(T) = t;,(T) t;,(T) - I (AI1) 

and use this matrix, rather than tin(r) tin(z) in the iterations. Using this procedure, 
we have calculated t’(~) with a minimum, of 12 significant figures. 
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